Symbolic computation with monotone operators
نویسندگان
چکیده
منابع مشابه
Symbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملSymbolic Computation of Recursion Operators for Nonlinear Differential-Difference equations
An algorithm for the symbolic computation of recursion operators for systems of nonlinear differential-difference equations (DDEs) is presented. Recursion operators allow one to generate an infinite sequence of generalized symmetries. The existence of a recursion operator therefore guarantees the complete integrability of the DDE. The algorithm is based in part on the concept of dilation invari...
متن کاملSome results on pre-monotone operators
In this paper, some properties of pre-monotone operators are proved. It is shown that in a reflexive Banach space, a full domain multivalued $sigma$-monotone operator with sequentially norm$times$weak$^*$ closed graph is norm$times$weak$^*$ upper semicontinuous. The notion of $sigma$-convexity is introduced and the relations between the $sigma$-monotonicity and $sigma$-convexity is i...
متن کاملDistributed Symbolic Computation with DTS
We describe the design and implementation of the Distributed Threads System (DTS), a programming environment for the paralleliza-tion of irregular and highly data-dependent algorithms. DTS extends the support for fork/join parallel programming from shared memory threads to a distributed memory environment. It is currently implemented on top of PVM, adding an asynchronous RPC abstraction and tur...
متن کاملMonotone Operators without Enlargements
Enlargements have proven to be useful tools for studying maximally monotone mappings. It is therefore natural to ask in which cases the enlargement does not change the original mapping. Svaiter has recently characterized non-enlargeable operators in reflexive Banach spaces and has also given some partial results in the nonreflexive case. In the present paper, we provide another characterization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Communications in Computer Algebra
سال: 2019
ISSN: 1932-2240
DOI: 10.1145/3338637.3338646